The relationship of eigenvalues between backward MPSD and Jacobi iterative matrices
نویسندگان
چکیده
In this paper, the backward MPSD (Modified Preconditioned Simultaneous Displacement) iterative matrix is firstly proposed. The relationship of eigenvalues between the backward MPSD iterative matrix and backward Jacobi iterative matrix for block p-cyclic case is obtained, which improves and refines the results in the corresponding references. Keywords—Backward MPSD iterative matrix, Jacobi iterative matrix, eigenvalue, p-cyclic matrix
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملIterative methods for the numerical solution of linear systems
The objective of this dissertation is the design and analysis of iterative methods for the numerical solution of large, sparse linear systems. This type of systems emerges from the discretization of Partial Differential Equations. Two special types of linear systems are studied. The first type deals with systems whose coefficient matrix is two cyclic whereas the second type studies the augmente...
متن کاملA New Algorithm for the Svd of a Long Product of Matrices and the Stability of Products
Lyapunov exponents can be estimated by accurately computing the singular values of long products of matrices, with perhaps 1000 or more factor matrices. These products have extremely large ratios between the largest and smallest eigenvalues. A variant of Rutishauser’s Cholesky LR algorithm for computing eigenvalues of symmetric matrices is used to obtain a new algorithm for computing the singul...
متن کاملStair Matrices and Their Generalizations with Applications to Iterative Methods I: a Generalization of the Sor Method
Stair matrices and their generalizations are introduced. Some properties of the matrices are presented. Like triangular matrices this class of matrices provides bases of matrix splittings for iterative methods. A remarkable feature of iterative methods based on the new class of matrices is that the methods are easily implemented for parallel computation. In particular, a generalization of the S...
متن کامل